HOW DENSE IS MY MATERIAL?
Dynalene can perform density testing on almost all liquid sample types. We most commonly use a density meter to measure density and specific gravity for our customers.
Dynalene can perform density testing on almost all liquid sample types. We most commonly use a density meter to measure density and specific gravity for our customers.
Dynalene can measure density and specific gravity from a temperature range of 0°C (32°F) to 91°C (195.8°F). Depending on your sample type or preferred method, we can tailor the test to meet your needs. If your testing temperature falls outside our temperature range, please contact us and we may be able to satisfy your request. Dynalene also has the capability of using hydrometers to measure the specific gravity of samples.
We encounter lots of unique samples that may have unconventional testing requirements or specifications. If you are unsure what type of test or instrument is required to analyze your sample, give us a call and we’ll make sure it’s tested the way you want it.
Density is a physical property of matter that expresses a relationship of mass to volume. The more mass an object contains in a given space, the more dense it is. So as an example, if you had a pot filled with 1 kg of water and wanted to heat its temperature by 1°C, it would require 4,184 Joules of heat. Some materials have high specific heat capacities, such as water or hydrogen, and other materials have low specific heat capacities, such as glass, copper, and lead.
Understanding the specific heat of a material is very important in heat transfer applications. Engineers have been trying to identify new material technologies with very high specific heats for thermal energy storage applications. The more energy that can be stored in a material means less material is needed, the system can be smaller, and the cost can be reduced. In the past decade there has been an increased focus in molten salt solar plants because of the high thermal storage capacity of certain salts. Mirrors reflect sunlight onto pipes carrying hot liquid salt, and this salt is eventually stored in big tanks where it remains hot because of the salt’s high heat capacity. The salt is then drawn off to create steam which powers a turbine to create electricity. It is important for the salt to stay very hot because the plant still needs to produce electricity when there is no sunlight.
Geothermal energy is another power generation process that utilizes the specific heat of the earth’s crust. Pipes carrying a heat transfer fluid are installed deep down into the earth where it is hot from the internal heating of the earth’s core. The heat transfer fluid removes the heat from the deep rock beds and carries it to the surface where it can be used to create steam.
One reason why water is such an excellent heat transfer fluid is because it can carry and expel a lot of heat per unit mass due to the high specific heat. In nature, the high specific heat of ocean water helps regulate the global temperature by preventing days from being too hot and winters from being too cold. Similarly in the human body, the high amount of water present in the blood helps regulate body temperature and keep us cool.
Our differential scanning calorimeter works by measuring the amount of heat it takes to raise the temperature of a sample vs a reference. One sample pan is filled with the sample and placed in the cell. Another pan (empty) is also placed in the cell. Several precise temperature probes are placed throughout the cell and heat flow and temperature are measured.
After determining how much heat it takes to raise the temperature of the pan containing the sample, the reference pan is subtracted and the specific heat of just the sample can be calculated. Specific heat can be viewed as a function of time or temperature, and this makes it easy to identify phase transitions, endothermic/exothermic reactions, crystallization kinetics, and other thermal phenomena.
Dynalene Labs
5250 West Coplay Road
Whitehall, PA 18052
1.877.244-5525 | 610.262.9686
lab@dynalene.com